BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251121T195928EST-2186RE8utT@132.216.98.100 DTSTAMP:20251122T005928Z DESCRIPTION:Title: $k$-abelian equivalence - an equivalence relation inbetw een the equality and the abelian equality.\n\nTwo words $u$ and $v$ are $k $-abelian equivalent if\, for each $w$ of length at most $k$\, the number of occurrences of $w$ in $u$ coincides to that in $v$. The $k$-abelian equ ivalence is a natural equivalence relation\, in fact a congruence\, betwee n the equality and the abelian equality. Topics we consider in this lectur e are the avoidability of patterns\, the palindromicity\, and different ty pes of complexity issues\, in particular the number of the equivalence cla sses and the fluctuation of the complexity function of infinite words. We show that the set of minimal elements of the equivalence classes is a rati onal set. Consequently\, for each parameter $k$ and alphabet size $m$\, th e numbers of equivalence classes of words of length $n$ form a rational se quence. Given $k$ and $m$ this sequence is algorithmically computable\, bu t in practice only on very small values of the parameters.\n\n\n  \n\n Semin ar LACIM\n 201\, av. du Président-Kennedy\, LOCAL PK-4323\, Montréal (Qc) H 2X 3Y7\n\n\n \n DTSTART:20170908T173000Z DTEND:20170908T183000Z SUMMARY:Juhani Karhumäki\, Université de Turku URL:/mathstat/channels/event/juhani-karhumaki-universi te-de-turku-269971 END:VEVENT END:VCALENDAR