BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251122T045956EST-1884LPwFll@132.216.98.100 DTSTAMP:20251122T095956Z DESCRIPTION:Schroedingerian subharmonic functions\n\nSchroedingerian subhar monic functions are weak subsolutions of the stationary Schroedinger equat ion −∆u(x) + c(x)u(x) = 0 under appropriate assumptions on the potential c \, defined in an n-dimensional domain in R^n. For these functions\, we con sider the generalizations and analogs of properties of the classical subha rmonic functions\, such as\, e.g.\, the Phragmen-Lindelof principle\, the Fatou pointwise theorem\, the Blaschke\, Hayman-Azarin\, Matsaev theorems. If the potential c(x) is dominated by the inverse square |x|^(−2) \, then the results are similar to those in the classical case\, while if the pot ential grows faster\, certain properties are essentially different.\n DTSTART:20171124T190000Z DTEND:20171124T200000Z LOCATION:Room VCH-2820\, CA\, Université Laval SUMMARY:Alexander Kheyfits\, CUNY URL:/mathstat/channels/event/alexander-kheyfits-cuny-2 82956 END:VEVENT END:VCALENDAR