BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251121T162511EST-17598xVZdu@132.216.98.100 DTSTAMP:20251121T212511Z DESCRIPTION:Title: Conformal surface embeddings and extremal length.\n\nAbs tract: Given two Riemann surfaces with boundary and a homotopy class of to pological embeddings between them\, we show there is a conformal embedding in the homotopy class if and only if the extremal length of every simple multi-curve is decreased under the embedding. For applications to dynamica l systems\, we need an additional fact: if the ratio is bounded above away from one\, then it remains so under passing to any finite cover. I will a lso briefly mention how under natural conditions the technique of quasicon formal surgery promotes so-called rational-like maps f:f^{-1}(S)→S\, where f^{-1}(S)⊂S are planar Riemann surfaces\, to rational maps. This is joint work of Jeremy Kahn\, Kevin M. Pilgrim\, and Dylan P. Thurston\; https:// arxiv.org/abs/1507.05294\n\nTo attend a zoom session\, and for suggestions \, questions etc. please contact Galia Dafni (galia.dafni [at] concordia.c a)\, Alexandre Girouard (alexandre.girouard [at] mat.ulaval.ca)\, Dmitry J akobson (dmitry.jakobson [at] mcgill.ca)\, Damir Kinzebulatov (damir.kinze bulatov [at] mat.ulaval.ca) or Maxime Fortier Bourque (maxime.fortier.bour que [at] umontreal.ca)\n  \n DTSTART:20220325T183000Z DTEND:20220325T193000Z SUMMARY:Kevin Pilgrim (Indiana University) URL:/mathstat/channels/event/kevin-pilgrim-indiana-uni versity-338533 END:VEVENT END:VCALENDAR