BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251122T023133EST-0304g5hfD5@132.216.98.100 DTSTAMP:20251122T073133Z DESCRIPTION:Analysis Seminar CRM-Montréal-Québec\n\nTitle: Wiener algebras and trigonometric series in a coordinated fashion.\n\nLet $W_0(mathbb R)$ be the Wiener Banach algebra of functions representable by the Fourier int egrals of Lebesgue integrable functions. \n It is proven in the paper that\ , in particular\, a trigonometric series $sumlimits_{k=-infty}^infty c_k e ^{ikt}$ is the Fourier series of an integrable function\n  if and only if t here exists a $phiin W_0(mathbb R)$ such that $phi(k)=c_k$\, $kinmathbb Z$ . If $fin W_0(mathbb R)$\, then the piecewise linear \n continuous function $ell_f$ defined by $ell_f(k)=f(k)$\, $kinmathbb Z$\, belongs to $W_0(math bb R)$ as well. Moreover\, $|ell_f|_{W_0}le  |f|_{W_0}$. \n Similar relatio ns are established for more advanced Wiener algebras. These results are su pplemented by numerous applications. In particular\, new necessary \n and s ufficient conditions are proved for a trigonometric series to be a Fourier series and new properties of $W_0$ are established.\n This is a joint work with R. Trigub.\n\nRoom: 4336-4384 Pav. André-Aisentadt (CRM)\n\nhttp://w ww.math.mcgill.ca/jakobson/analysish/seminar.html\n\n \n DTSTART:20221104T180000Z DTEND:20221104T190000Z SUMMARY:Elijah Liflyand\, Bar-Ilan University URL:/mathstat/channels/event/elijah-liflyand-bar-ilan- university-343173 END:VEVENT END:VCALENDAR