BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251008T153330EDT-4516vuiP4p@132.216.98.100 DTSTAMP:20251008T193330Z DESCRIPTION:Title: Dispersion for Coulomb wave functions\n\nAbstract: We st udy the Sch\'{o}dinger equation with a repulsive Coulombic potential on $\ mathbb{R}^3$ . For radial data\, we obtain an $L^1\rightarrow L^\infty$ di spersive estimate with the natural decay rate $t^{-\frac{3}{2}}. Our proof uses the spectral theory of strongly singular potentials to obtain an exp ression for the evolution kernel. A semiclassical turning point analysis o f the kernel then allows the time decay to be extracted via oscillatory in tegral estimates. This is joint work with E. Toprak\, B. Vergara\, and J. Zou.\n\nWhere: CRM\, Université de Montréal\, Pavillon André-Aisenstadt\, room 5340\, and by Zoom (see link below)\n\nJoin Zoom Meeting\n\nhttps://u s06web.zoom.us/j/83180453914?pwd=RQnoWH7aQqXAxldXZsqdafFCmh7dBC.1\n\nMeeti ng ID: 831 8045 3914\n\nPasscode: 719821\n DTSTART:20240328T183000Z DTEND:20240328T193000Z SUMMARY:Adam Black (Yale) URL:/mathstat/channels/event/adam-black-yale-356399 END:VEVENT END:VCALENDAR